Dense Plasma Focus-Based Nanofabrication of III–V Semiconductors: Unique Features and Recent Advances
نویسندگان
چکیده
The hot and dense plasma formed in modified dense plasma focus (DPF) device has been used worldwide for the nanofabrication of several materials. In this paper, we summarize the fabrication of III-V semiconductor nanostructures using the high fluence material ions produced by hot, dense and extremely non-equilibrium plasma generated in a modified DPF device. In addition, we present the recent results on the fabrication of porous nano-gallium arsenide (GaAs). The details of morphological, structural and optical properties of the fabricated nano-GaAs are provided. The effect of rapid thermal annealing on the above properties of porous nano-GaAs is studied. The study reveals that it is possible to tailor the size of pores with annealing temperature. The optical properties of these porous nano-GaAs also confirm the possibility to tailor the pore sizes upon annealing. Possible applications of the fabricated and subsequently annealed porous nano-GaAs in transmission-type photo-cathodes and visible optoelectronic devices are discussed. These results suggest that the modified DPF is an effective tool for nanofabrication of continuous and porous III-V semiconductor nanomaterials. Further opportunities for using the modified DPF device for the fabrication of novel nanostructures are discussed as well.
منابع مشابه
Plasma Nanoengineering and Nanofabrication
With the recent advances in nanotechnology, plasma nanofabrication has become an exciting new niche because plasma-based approaches can deliver unique structures at the nanoscale that cannot be achieved by other techniques and/or in a more economical and environmentally friendly manner.[...].
متن کاملRoom-temperature ballistic transport in III-nitride heterostructures.
Room-temperature (RT) ballistic transport of electrons is experimentally observed and theoretically investigated in III-nitrides. This has been largely investigated at low temperatures in low band gap III-V materials due to their high electron mobilities. However, their application to RT ballistic devices is limited by their low optical phonon energies, close to KT at 300 K. In addition, the sh...
متن کاملNanoparticles and Nanostructured Cobalt Deposition using Dense Plasma Focus Device and their Characterization
Nanofabrication through plasma route has been used for fabrication of Nanoparticles and Nanostructured materials as it is indicated that plasma route is superior to other physical and chemical techniques. Srivastava has established, the deposition of nanoparticles through plasma route on different substrates using Dense Plasma Focus device (DPF). DPF is a source of hot (1-2 keV) and dense (10 2...
متن کاملTip-Based Nanofabrication of Arbitrary Shapes of Graphene Nanoribbons for Device Applications.
Graphene nanoribbons (GNRs) have promising applications in future nanoelectronics, chemical sensing and electrical interconnects. Although there are quite a few GNR nanofabrication methods reported, a rapid and low-cost fabrication method that is capable of fabricating arbitrary shapes of GNRs with good-quality is still in demand for using GNRs for device applications. In this paper, we present...
متن کاملAdvances in top-down and bottom-up surface nanofabrication: techniques, applications & future prospects.
This review highlights the most significant advances of the nanofabrication techniques reported over the past decade with a particular focus on the approaches tailored towards the fabrication of functional nano-devices. The review is divided into two sections: top-down and bottom-up nanofabrication. Under the classification of top-down, special attention is given to technical reports that demon...
متن کامل